Pediatric ECG Interpretation

- Basic principles of electrocardiography
- Approach to the ECG
- Criteria for chamber enlargement and hypertrophy
- Dysrhythmia diagnosis

AUGMENTED LEADS

- INCREASE SIZE OF POTENTIALS BY 50%
- DEPOLARISATION FROM RIGHT TO LEFT. SO LEADS ON RIGHT –VE FOR P, QRS, T. eg aVR
 - LEFT LEADS RECEIVE DEPOLARISATION SO LEADS ON LEFT AND INFERIOR +VE
- FOR P,QRS, T.eg aVL, I, II, III, aVF

QRS AND T

- QRS is depolarisation
- T is replarisation which is counter current to depolarisation
- So expects waves to be opposite each other in the leads
- However both are in same direction in the leads

REASON

- Depolarisation is from endocardium to epicardium
- Repolarisation is from epicardium to endocardium
- If repolarisation were from endocardium to epicardium direction would be opposite

VENTRICULAR ACTIVATION

- Activation of ventricles is from the septum, starting from left side to right of septum
- Leads to initial R wave I right leads and Q wave in right leads, ie I, AVL, and V5,V6
- In complete LBBB, septum is activated from right to left leading to Q waves in V1, V2

Why everybody hates pediatric ECG's

- Overwhelming what do the different leads mean?
- Age dependence must understand how age impacts the ECG

Age-related Changes

- Newborns will have right ventricular dominance (right axis, right ventricular hypertrophy)
- **■** Younger patients will have faster heart rates
- T-wave inversion steadily goes away in precordial leads
- **■** Most intervals will get longer
- Need a chart

Principles Summary

- ECG is a voltmeter measuring the potential difference between the 2 poles as it changes with time
- **Excitation coming toward the positive pole written as an upward direction**
- Biphasic signal indicative of the impulse coming toward and then away from the positive pole
- Greater muscle mass can hide excitation of areas of smaller mass

SA NODE, AV NODE

- SA node is located high in the RA near junction with SVC
- AV node is located low in the RA
- **BUNDLE OF HIS connects AV node with summit of interventricular septum**
- Bundle then divides into right and left bundle branches into RV and LV

CONDUCTION

Activation from endocardium to epicardium in both ventricles

Conduction System Anatomy

Limb Leads Einthovan Triangle

$$III +$$

Augmented Leads Wilson's Central Terminal

Precordial Leads

Nomenclature & Measured Intervals

- Rates
 - Atrial
 - Ventricular
- PR interval
- QRS duration
- QT interval
- \blacksquare QTc: QT/ \vee R-R

Approach to the ECG

- Rate
- Rhythm
- Axis
- Hypertrophy/Enlargement
- QRS Morphology
- ST-T waves

DURATION

- P:HEIGHT:3 SMALL SQUARES
 WIDTH:21/2 SMALL SQUARES
 INITIAL PART BY RA
- QRS:WIDTH:21/2 SMALL SQUARES

Normal ECG

Determining Heart Rate

- \blacksquare One small box = 40ms
- One large box = 200ms
- One very large box = 1000ms = 1 second

HR

What's the Heart Rate?

What's the heart rate?

Approach to the ECG

- Rate
- Rhythm
- Axis
- Hypertrophy/Enlargment
- QRS Morphology
- ST-T waves

Sinus rhythm Rhythm

- Is there a p-wave before every qrs?
- Is there a qrs after every p-wave?
- Is the p-wave axis normal (sinus rhythm)
- Is the rate fast, slow, or within the normal range? (age dependent)
- Is the PR interval normal for age? (1st degree AV block)

Coronary sinus rhythm

- In verted p waves in inferior leads
- ie Leads II, III, aVf.
- PR interval is normal unlike in SVT

What's the rhythm?

Approach to the ECG

- Rate
- Rhythm
- Axis
- Hypertrophy/Enlargement
- QRS Morphology
- ST-T waves

Axis Determination

Axis Determination

AXIS

- PERPENDCULAR TOLIMB LEAD :R+S=0
- PARALLEL TO LIMB LEAD WITH DOMINANT R
- OPPOSITE TO LIMB LEAD WITH DOMINANT S.

Axis Abnormalities

- **Left Axis Deviation**
 - Left ventricular hypertrophy
 - Aortic stenosis
 - **■** Hypertrophic cardiomyopathy
 - Defects with minimal right sided forces (tricuspid atresia)
 - Atrioventricular septal defect

Axis Abnormalities

- Right Axis Deviation
 - Normal newborn
 - Right Ventricular Hypertrophy
 - Tetralogy
 - Minimal Left Sided Forces
 - **■** Hypoplastic left heart syndrome
 - Systemic Right Ventricle

What's the axis?

What's the axis?

Approach to the ECG

- Rate
- Rhythm
- Axis
- **■** Hypertrophy/Enlargement
- QRS Morphology
- ST-T waves

Principles of Hypertrophy and Enlargement

- Chamber enlargement results in a longer depolarization time (wider QRS or P)
- Chamber hypertrophy results in greater QRS amplitude
- When 1 chamber is affected look for others
- When normal conduction pathways are disrupted diagnostic criteria become questionable

Principles of Hypertrophy and Enlargement

- When cardiac position is altered diagnostic criteria become questionable
- Enlargement is accompanied by hypertrophy
- Hypertrophy is not necessarily accompanied by enlargement
- Always interpret the ECG in light of the clinical circumstances

Atrial Enlargement

- Right Atrial Enlargement
 - P wave in lead II > 2.5-3.0 "p-pulmonale"
- Left Atrial Enlargement
 - Broad P wave in 11, V1
 - Broad negative component (more than one small box)

Right Atrial Enlargement

Left Atrial Enlargement

Hypertrophy Summary Right Sided Chambers

- Right ventricular hypertrophy
 - -R > 1 my in V_1 when age > 18 months
 - Upright T in V_1 8 days to 8 years
 - $-\operatorname{rsR}$ pattern in V_1
 - -qR pattern in V_1

TALL R IN aVR

BOTH V1 AND V2 OVERLIE RV SO CAN BE USED FOR RVH

Right Ventricular Hypertrophy Prominent R Wave

Right Ventricular Hypertrophy Upright T Wave

Hypertrophy Summary Left Sided Chambers

- Left atrial enlargement P wave > 120 msec in duration in any lead
- Left ventricular hypertrophy
- Age dependent criteria
 - -TALL R IN aVL: =/> 11 mm
 - -Large R in V5-6, Large S in V1-2
- Left ventricular strain negative T in V_5 or V_6

LVH

- S in V1 + R in V5 or V6 (whichever is larger) =/> 35 mm
- -R in aVL
- -Prominent Q in V6

Left Ventricular Hypertrophy Hypertrophic Myopathy

KATZ-WACHTEL PHENOMENON

1.COMBINED RVH AND LVH
2.EQUIPHASIC COMPLEXES IN ≥2 LIMB
LEADS AND MID PRECORDIAL LEADS
3.SEEN IN VSD, PDA. Etc.

Approach to the ECG

- Rate
- Rhythm
- Axis
- Hypertrophy/Enlargement
- QRS Morphology
- ST-T waves

Right Bundle Branch Block

Left Bundle Branch Block

Right Ventricular Hypertrophy qR Pattern

DEXTROCARDIA

P, QRST AND T WAVES INVERTED IN LEAD 1

THANK YOU

ABNORMAL RHYTHM

- Rhythms other than regular sinus rhythm
- Arrhythmias are primarily classified according to their rate

Usually the atria and ventricles have the same rates

ORIGIN OF RHYTHM

- If atrial and ventricular rhythms are associated and have the same rates then
- Rhythm originates in the atria or ventricular
- If atrial and ventricular rhythms are associated but atrial rate is faster than ventricular rate then
- Rhythm originates in the atria

SINUS RHYTHM

- P wave before each QRS complex
- Normal P-R interval
- P wave axis 0-90
- P wave upright in Leads 1 and aVf

If atrial and ventricular rhythms are associated but ventricular rate is faster than atrial rate then rhythm originates in the ventricles

■ If atrial and ventricular rhythms are not associated then there is AV dissociation.

MECHANISMS PRODUCING ARRHYTHMIAS

- Automaticity, ie problems of impulse formation
- Block or re-entry, ie problems of impulse conduction

AUTOMATICITY

- These originate from pacemaker cells which include
- SA node
- Purkinje cells
- Common His bundle
- Right and left bundle branches and

- Supraventricular arrhythms include those from
- SA node
- **■** Atrial muscle
- AV node
- **■** His bundle

- **■** Ventricular arrhythmias include
- **■** Bundle branches
- Purkinje fibres
- **■** Ventricular muscle

IMPORTANCE OF QRS COMPLEX

■ An extension of the Willie Sutton law

- Sutton robbed banks because that is where the money was
- The behaviour of the QRS is what matters at the end despite what the atria are doing

■ In tachyarryhthmias, if QRS of normal duration in at least two leads the rhythm is supraventricular(SVT)

■ Wide and bizarre QRS means it is either SVT with ventricular aberration or ventricular tacchyarrhthmia

PREMATURE BEATS(PB)

- Normal sinus rhythm commonly interrupted by premature beat(PB)
- The PB itself does not cause symptoms but a palpitation may be felt following the next normal heart beat
- There is a pause following the PB until the next normal beat

PREMATURE BEATS

May originate from supraventricular, which includes SA NODE, ATRIAL MUSCLE, AV NODE OR HIS BUNDLE

May also be from Ventricular origin, ie BUNDLE BRANCHES, PURKINJE FIBRES, VENTRICULAR MUSCLE

- The timing of normal rhythm is indicated by the curved lines with arrows
- A ventricular premature beat interrupts the rhythm indicated by (1)
- This prevents occurrence of the next normal beat(2).
- The next normal beat(3) occurs at the normal time

SINUS TACCHYCARDIA

- SA node is regulated by both parasympathetic and sympathetic systems
- Any flight or fright condition leads to sympathetic activation in the body
- There is no pathologic cardiac condition
- Therefore treatment is correcting the condition leading to sympathetic activation rather drugs to suppress the SA node

- Common conditions leading to sympathetic activation includes stress and anxiety, anaemia, shock
- **■** BP:CO × Peripheral vascular resistance
- CO:Stroke volume × heart rate

ECG FEATURES SINUS TACHYCARDIA

- Maximal stimulation of SA NODE by sympathetics is 220/min and rarely 160/min in non exercising adults
- Normally P wave before QRS.
- Shorter PR interval than normal, since the increased sympathetic tone also affects the AV nodal conduction
- QRS complex is normal in morphology

SUPRAVENTRICULAR TACHYCARDIA(SVT)

- Atrial tachycardia
- Atrioventricular nodal tachycardia
- Atrioventricular re-entry tachycardia

AVNRT

- Additional conduction from atria to ventricles
- This additional path involves the AV node
- An antegrade path since from atria to ventricles

AVRT

- Constitute about 30% of SVT
- Re-entry does not involve the AV node
- Usually a retrograde conduction from ventricle-atria-ventricle

AVRT

- The first activation of ventricle is premature.
- This is followed by normal activation, thus prolonging contraction of ventricles.
- This produces a wide QRS complex called delta wave eg WPW syndrome

Wolff-Parkinson-White Syndrome

HISTORY

- In 1893, Kent had described muscular connection s between atria and ventricles but wrongly assumed they were normal connections
- In 1930 Wolf and White in Boston and Parkinson in London published ECG's on 11 patients with bizarre QRS complexes and short PR interval

- In 1914 Mines suggested that this bundle of Kent may mediate re-entry tachycardias
- Finally in the same year Segers connected the short PR interval, widened QRS complex into WPW syndrome
- Mediated by the bundle of Kent. He termed the QRS complex delta wave

SUPRAVENTRICULAR TACHYCARDIA(SVT)

- Rates between 250-300/min
- Rates More than 230/min unlikely to be sinus rhythm
- P waves visible in about 60%
- P wave axis is abnormal

ATRIAL AUTOMATICITY

■ This about 10% of SVT

- There is re-entry within the atria itself
- This leads to atrial re-entry circuit

ATRIAL FLUTTER

■ Instead of P waves there are sawtooth flutter waves at a rate of 300-600/min

MANAGEMENT OF SVT WITH COLLAPSE

DC CARDIOVERSION

SVT WITH STABLE CVS STATUS

- Vagal manouvres, icepacks on face carotid masssage
- Management involves blocking the AV node with adenosine or digoxin
- Blocking the accessory path with flecainide
- **■** Maintain with drugs

VENTRICULAR ARRHYTHMIAS

- Includes Ventricular premature beats or ventricular extra systoles
- ightharpoonup Premature ≥QRS, or prolonged QRS(0.08 sec)
- Abnormal QRS MORPHOLPGY
- Absent preceding P waves
- If frequent may lead to VT

VENTRICULAR TACHYCARDIA(VT)

- Defined as 3 or more successive beats of ventricular origin at rate more than 120/min
- Stable CVS status: GIVE LIGNOCAINE
- If CVS compromise DC cardioversion
- Eg is Torsades de pointes:sinusoidal polymorphic QRS complexes

VENTRICULAR FIBRILLATION

- Bizzare QRS complexes of varying sizes and shapes
- Rapid rates and irregular
- **■** Treatment is defribillation

Coronary sinus rhythm

- Inverted p waves in inferior leads
- ie Leads II, III, aVf.
- PR interval is normal unlike in SVT

1st DEGREE BLOCK

2nd DEGREE BLOCK (WENCKEBACH)

P

2nd DEGREE BLOCK (2:1)

2nd DEGREE BLOCK (WENCKEBACH) P

COMPLETE (3rd DEGREE) BLOCK

VENTRICULAR TACHYCARDIA

SUPRAVENTRICULAR TACHYCARDIA

