Demystifying the ECG in theory and practice

Hypertrophy

Dr Frank Owusu-Sekyere PSG AGSM Pre-conference 6th February 2020

Why hypertrophy?

- Congenital hypertrophic cardiomyopathies
- acquired- Remodeling of the heart in chronic HF

STROKE VOLUME

• Frank Starling's Law

 The greater the volume of blood in the heart during diastole, the more forceful the cardiac contraction, the more blood the ventricle will pump (to a point)

Increased blood volume = increased stretch of myocardium Increased force to pump blood out.

Marian Williams RN

- Increasing SV ----- INCREASED WALL TENSION-----increased oxygen consumption
- Laplace law
- Wall stress = pressure x <u>radius</u>

2 x wall thickness

- the bigger the LV (Radius)or pressure, the greater the wall stress

- In HF, Hypertrophy develops to balance the increased pressure and keeps the wall stress unchanged, same as reducing the diameter of the heart.

Cardiac cycle diagram

Sino-atrial node discharge: isoelectric

P wave: atrial activation

AV node/His bundle transmission: isoelectric

Q wave: septal activation

R/S wave: ventricular activation

T Two Ver rep

T wave: Ventricular repolarization

P-WAVE

P wave:

• beginning to end of P wave

1

1

• time for atrial depolarization

- Gives atrial dimension
- Height- RIGHT (>3mm)
- Width- LEFT (>2.5 small squares in children or 2 small squares in infants)

Figure 3-14 Criteria for atrial hypertrophy. BAH, biatrial hypertrophy; LAH, left atrial hypertrophy; RAH, right atrial hypertrophy. (*From Park MK, Guntheroth WG: How to Read Pediatric ECGs, 4th ed. Philadelphia, Mosby, 2006.*)

- ABNORMAL ECG -

12 Lead; Standard Placement

Unconfirmed Diagnosis

Cardiac cycle diagram

Sino-atrial node discharge: isoelectric

P wave: atrial activation

AV node/His bundle transmission: isoelectric

Q wave: septal activation

R/S wave: ventricular activation

T Two Ver rep

T wave: Ventricular repolarization

Figure 3-1 Hexaxial reference system (A) shows the frontal projection of a vector loop, and horizontal reference system (B) shows the horizontal projection. The combination of A and B constitutes the 12-lead (or 13-lead) electrocardiogram. (From Park MK, Guntheroth WG: How to Read Pediatric ECGs, 4th ed. Philadelphia, Mosby, 2006.)

Figure 3-2 An easy way to memorize the hexaxial reference system. (From Park MK, Guntheroth WG: How to Read Pediatric ECGs, 4th ed. Philadelphia, Mosby, 2006.)

VENTRICLES

Figure 3-22 Algorithm for differentiating between ventricular hypertrophy (VH) and ventricular conduction disturbances (VCDs). LV, left ventricle; RV, right ventricle.

GENERAL PRINCIPLES OF VENTRICULAR HYPERTROPHY • CHANGES IN QRS AXIS

-directed toward the hypertrophied ventricle

- RAD seen in RVH
- -LAD- LVH with volume overload but no pressure overload
- -Marked LAD indicates VCD

- Draw perpendicular line from each point until lines intersect
- QRS axis = line from centre to intersection

FCG 1. ORS axis calculates to +50

CHANGES IN QRS VOLTAGE

• CHANGES IN QRS VOLTAGE

-RVH ----Voltages increases in leads that look at right or a negative in leads that look at LV

LVH- Voltages increase in leads that look at LV and negative for those that look at the right

Figure 3-15 Diagrammatic representation of left and right ventricular forces on the frontal projection or hexaxial reference system (A) and the horizontal plane (B). LV, left ventricular; RV, right ventricular. (*From Park MK, Guntheroth WG: How to Read Pediatric ECGs, 4th ed. Philadelphia, Mosby, 2006.*)

CHANGES IN R/S RATIO

- R/S ratio represents the relative electromotive force of opposing ventricles
- In VH, a change may be seen in the R/S ratio without an increase in the absolute voltage
- Increase in right precordial leads-RVH
- Decrease in RT precordial leads –LVH
- Increase in LT leads –LVH
- Decrease in LT leads -RVH

Lead		0–1 mo	1-6 mo	6 mo-1 vr	1–3 vr	3–8 vr	8–12 vr	12–16 vr	Adult
V1	LLN	0.5	0.3	0.3	0.5	0.1	0.15	0.1	0.0
	Mean	1.5	1.5	1.2	0.8	0.65	0.5	0.3	0.3
	ULN	19	S = 0	6	2	2	1	1	1
V2	LLN	0.3	0.3	0.3	0.3	0.05	0.1	0.1	0.1
	Mean	1	1.2	1	0.8	0.5	0.5	0.5	0.2
	ULN	3	4	4	1.5	1.5	1.2	1.2	2.5
V6	LLN	0.1	1.5	2	3	2.5	4	2.5	2.5
	Mean	2	4	6	20	20	20	10	9
	ULN	S = 0	S = 0	S = 0	S = 0	S = 0	S = 0	S = 0	S = 0

Table 3-5 -- R/S Ratio: Mean and Upper and Lower Limits of Normal According to Age

From Guntheroth WB: Pediatric Electrocardiography. Philadelphia, WB Saunders, 1965. LLN, lower limits of normal; ULN, upper limits of normal. • Changes in T-axis

 Changes seen in severe ventricular hypertrophy with relative ischemia of the hypertrophied myocardium • Q- wave in V1- RVH

 Deep Q-wave (>5mm) as well as Tall T-wave (>15mm) in V5, V6 suggest LVH of volume loading type

• Upright T-wave in V1 RVH

Left Ventricular Hypertrophy

• Increased R voltages in frontal left leads (I, II, aVL, aVF)

• Tall R in V5, V6 and/or S wave in V1,V2,V4R

• Decreased R/S ratio in Right praecordial leads

• Increased R/S ratio in V5,V6

Figure 3-2 An easy way to memorize the hexaxial reference system. (From Park MK, Guntheroth WG: How to Read Pediatric ECGs, 4th ed. Philadelphia, Mosby, 2006.)

q V6 = 5mm; R V6 >30mm

RVH

- Increased R voltage in aVR, III, Deep S in I
- Increased R in V4R, V1, V2 and S in V5, V6
- Increased R/S in Rt chest leads
- Decreased R/S in V5, V6
- •T-wave
- RAD

Figure 3-1 Hexaxial reference system (A) shows the frontal projection of a vector loop, and horizontal reference system (B) shows the horizontal projection. The combination of A and B constitutes the 12-lead (or 13-lead) electrocardiogram. (From Park MK, Guntheroth WG: How to Read Pediatric ECGs, 4th ed. Philadelphia, Mosby, 2006.)

Biventricular hypertrophy

- Positive voltage criteria for RVH and LVH, absence of BBB or Preexcitation
- Katz-Wachtel Phenomenon
- Large equiphasic QRS in 2 or more limb leads
- And mid-precordial leads (V2-V5)

RAE; Upright T V1; large combined praecordial voltages; R V6 - 28mm

Q-WAVE

- Any negative deflection that *precedes* an R wave
- L-R depolarisation of the interventricular septum
- Small 'septal' Q waves are typically seen in the left-sided leads (I, aVL, V5 and V6)

AXIS

Hope its no more a double blind study

